SERIES: CP100 | DESCRIPTION: PELTIER MODULE

FEATURES
- arcTEC™ structure on select models
- enhanced reliability for high thermal cycling
- superior thermal performance
- silicon sealed
- wide ΔT max
- precise temperature control
- solid state construction

MODEL

<table>
<thead>
<tr>
<th>MODEL</th>
<th>input voltage(^{1}) max (Vdc)</th>
<th>input current(^{2}) max (A)</th>
<th>internal resistance(^{3}) typ (Ω±10%)</th>
<th>output Q(^{4})max(^{5})</th>
<th>output (\Delta T)max(^{6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP10205033</td>
<td>9.6</td>
<td>10</td>
<td>0.71</td>
<td>56.2</td>
<td>68</td>
</tr>
<tr>
<td>CP103033(^{6})</td>
<td>11.8</td>
<td>10</td>
<td>0.88</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>CP10304033(^{6})</td>
<td>15</td>
<td>10</td>
<td>1.13</td>
<td>89</td>
<td>97</td>
</tr>
<tr>
<td>CP10415273(^{6})</td>
<td>4.9</td>
<td>10</td>
<td>0.37</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>CP105559415(^{6})</td>
<td>24.6</td>
<td>10</td>
<td>1.82</td>
<td>140</td>
<td>70</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum voltage at ΔT max and \(T_h=27°C\)
2. Maximum current to achieve ΔT max
3. Measured by AC 4-terminal method at 25°C
4. Maximum heat absorbed at cold side occurs at \(I_{\text{max}}, V_{\text{out}}\), and \(\Delta T=0°C\)
5. Maximum temperature difference occurs at \(I_{\text{max}}, V_{\text{out}}\), and \(Q=0W\) (ΔT max measured in a vacuum at 1.3 Pa)
6. Designed with arcTEC™ structure.
SPECFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions/Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder melting temperature</td>
<td>Connection between thermoelectric pairs</td>
<td>235</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Assembly compression</td>
<td></td>
<td>1</td>
<td></td>
<td>10</td>
<td>MPa</td>
</tr>
<tr>
<td>RoHS</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MECHANICAL DRAWING

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PLATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic plate</td>
<td>96% Al₂O₃</td>
</tr>
<tr>
<td>Wire leads (CP10415273)</td>
<td>18 AWG tin</td>
</tr>
<tr>
<td>Wire leads (all other models)</td>
<td>20 AWG tin</td>
</tr>
<tr>
<td>Sealer</td>
<td>Silicon rubber 703 RTV (between cold and hot side plates)</td>
</tr>
<tr>
<td>Joint cover</td>
<td>Silicon rubber 703 RTV</td>
</tr>
<tr>
<td>Marking</td>
<td>P/N & S/N printed on cold side surface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>HOT SIDE LENGTH (mm)</th>
<th>COLD SIDE LENGTH (mm)</th>
<th>WIDTH (mm)</th>
<th>THICKNESS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP10205033</td>
<td>20 ±0.3</td>
<td>20 ±0.3</td>
<td>50 ±0.3</td>
<td>3.3 ±0.1</td>
</tr>
<tr>
<td>CP103033</td>
<td>30 ±0.3</td>
<td>30 ±0.3</td>
<td>30 ±0.3</td>
<td>3.3 ±0.1</td>
</tr>
<tr>
<td>CP10304033</td>
<td>30 ±0.3</td>
<td>30 ±0.3</td>
<td>40 ±0.3</td>
<td>3.3 ±0.1</td>
</tr>
<tr>
<td>CP10415273</td>
<td>57 ±0.3</td>
<td>52 ±0.3</td>
<td>41 ±0.3</td>
<td>7.3 ±0.1</td>
</tr>
<tr>
<td>CP105559415</td>
<td>59 ±0.3</td>
<td>55 ±0.3</td>
<td>55 ±0.3</td>
<td>4.15 ±0.1</td>
</tr>
</tbody>
</table>
CP10205033 PERFORMANCE (\(Th=27^\circ C\))

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Input Voltage (V)} & \text{2 A} & \text{4 A} & \text{6 A} & \text{8 A} & \text{10 A} \\
\text{Heat Pumped, } Q (W) & & & & & \\
\hline
\end{array}
\]

\[
\Delta T=Th-Tc (^\circ C)
\]

CP10205033 PERFORMANCE (\(Th=50^\circ C\))

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Input Voltage (V)} & \text{2 A} & \text{4 A} & \text{6 A} & \text{8 A} & \text{10 A} \\
\text{Heat Pumped, } Q (W) & & & & & \\
\hline
\end{array}
\]

\[
\Delta T=Th-Tc (^\circ C)
\]
CP103033 PERFORMANCE (Th=27°C)

\[
\begin{array}{ccccccc}
\text{Input Voltage (V)} & 12 & 9 & 6 & 3 & 0 & 0 \\
\text{Heat Pumped, Q (W)} & 80 & 60 & 40 & 20 & 0 & 0 \\
\Delta T=\text{Th}-\text{Tc (°C)} & 80 & 60 & 40 & 30 & 20 & 10 & 0 \\
\end{array}
\]

CP103033 PERFORMANCE (Th=50°C)

\[
\begin{array}{ccccccc}
\text{Input Voltage (V)} & 12 & 9 & 6 & 3 & 0 & 0 \\
\text{Heat Pumped, Q (W)} & 80 & 60 & 40 & 20 & 0 & 0 \\
\Delta T=\text{Th}-\text{Tc (°C)} & 80 & 60 & 40 & 30 & 20 & 10 & 0 \\
\end{array}
\]
CP10304033 PERFORMANCE (Th=27°C)

CP10304033 PERFORMANCE (Th=50°C)
CP10415273 PERFORMANCE (Th=27°C)

![Graph showing the performance of CP10415273 at Th=27°C.]

CP10415273 PERFORMANCE (Th=50°C)

![Graph showing the performance of CP10415273 at Th=50°C.]

Additional Resources:
Product Page | 3D Model
CUI Devices | SERIES: CP100 | DESCRIPTION: PELTIER MODULE

CP105559415 PERFORMANCE (Th=27°C)

![Graph showing performance at Th=27°C](image)

CP105559415 PERFORMANCE (Th=50°C)

![Graph showing performance at Th=50°C](image)

Additional Resources: [Product Page] | [3D Model]
CUI Devices offers a one (1) year limited warranty. Complete warranty information is listed on our website.

CUI Devices reserves the right to make changes to the product at any time without notice. Information provided by CUI Devices is believed to be accurate and reliable. However, no responsibility is assumed by CUI Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI Devices products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

cuidevices.com